Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Proterozoic eukaryotic macroalgae are difficult to interpret because morphological details required for proper phylogenetic studies are rarely preserved. This is especially true of morphologically simple organisms consisting of tubes, ribbons, or spheres that are commonly found in a wide array of bacteria, plants, and even animals. Previous reports of exceptionally preserved Tonian (ca. 950−900 Ma) fossils from the Dolores Creek Formation of Northwestern Canada feature enough morphological evidence to support a green macroalgal affinity. However, the affinities of two additional forms identified on the basis of the size distribution of available specimens remain undetermined, while the presence of three unique algal forms supports other reports of increasing algal diversity in the early Neoproterozoic.Archaeochaeta gunchonew genus new species is described as a green macroalga on the basis of its well-preserved morphology consisting of an unbranching, uniseriate thallus with uniform width throughout and possessing an elliptical to globose anchoring holdfast. A larger size class of ribbon-like forms is interpreted asVendotaeniasp. A third size class is significantly smaller thanArchaeochaetan. gen. andVendotaenia,but in the absence of clear morphological characters, it remains difficult to assign. AsArchaeochaetan. gen. andVendotaeniarepresent photoautotrophic taxa, these findings support the hypothesis of increasing morphological complexity and phyletic diversification of macroalgae during the Tonian, leading to dramatic changes within benthic marine ecosystems before the evolution of animals.more » « less
-
Abstract The rise of eukaryotic macroalgae in the late Mesoproterozoic to early Neoproterozoic was a critical development in Earth’s history that triggered dramatic changes in biogeochemical cycles and benthic habitats, ultimately resulting in ecosystems habitable to animals. However, evidence of the diversification and expansion of macroalgae is limited by a biased fossil record. Non-mineralizing organisms are rarely preserved, occurring only in exceptional environments that favor fossilization. Investigating the taphonomy of well-preserved macroalgae will aid in identifying these target environments, allowing ecological trends to be disentangled from taphonomic overprints. Here we describe the taphonomy of macroalgal fossils from the Tonian Dolores Creek Formation (ca. 950 Ma) of northwestern Canada (Yukon Territory) that preserves cm-scale macroalgae. Analytical microscopy, including scanning electron microscopy and tomographic x-ray microscopy, was used to investigate fossil preservation, which was the result of a combination of pyritization and aluminosilicification, similar to accessory mineralization observed in Paleozoic Burgess Shale-type fossils. These new Neoproterozoic fossils help to bridge a gap in the fossil record of early algae, offer a link between the fossil and molecular record, and provide new insights into evolution during the Tonian Period, when many eukaryotic lineages are predicted to have diversified.more » « less
-
null (Ed.)Ernietta plateauensis is a semi-infaunal macroscopic eukaryote of unknown affinities common in latest Ediacaran (∼548–539 Ma) shallow marine settings in Namibia. The discovery of in-situ assemblages of Ernietta has demonstrated that these organisms lived in aggregated populations, while studies employing computational fluid dynamics (CFD) modeling have supported the hypothesis that these organisms were likely behaving as gregarious suspension feeders, analogous to many extant invertebrate phyla in present-day marine environments. Careful census and measurement of individuals within these in-situ populations offers an opportunity to examine how their size and location within a larger population affect nutrient delivery dynamics. In this study, we build on previous work by simulating fluid flow over aggregations of Ernietta comprising individuals of disparate sizes, and additionally reconstruct a population of Ernietta preserved in-situ from Farm Hansburg, Namibia. We use a combination of stationary and time-dependent CFD to reconstruct nutrient carrying flow paths, and compare the efficiency with which nutrients are partitioned between individuals of different shapes and sizes. Our results demonstrate that smaller Ernietta experience limited recirculation within their cavities compared to larger individuals. Furthermore, in spatially-accurate distributions, reduced recirculation is limited to isolated individuals of any size, while smaller individuals found downstream of larger ones receive enhanced cavity mixing. These reconstructed flow patterns illustrate that the disadvantage associated with small size is apparently mediated by location within the overall aggregation, suggesting a complex interplay of controls on feeding efficiency. This in turn suggests that aggregations of adult Ernietta would likely have performed a ‘nursery’ function, creating localized conditions ideal for the settlement and growth of younger individuals.more » « less
-
Abstract Molecular phylogenetic data suggest that photosynthetic eukaryotes first evolved in freshwater environments in the early Proterozoic and diversified into marine environments by the Tonian Period, but early algal evolution is poorly reflected in the fossil record. Here, we report newly discovered, millimeter- to centimeter-scale macrofossils from outer-shelf marine facies of the ca. 950–900 Ma (Re-Os minimum age constraint = 898 ± 68 Ma) Dolores Creek Formation in the Wernecke Mountains, northwestern Canada. These fossils, variably preserved by iron oxides and clay minerals, represent two size classes. The larger forms feature unbranching thalli with uniform cells, differentiated cell walls, longitudinal striations, and probable holdfasts, whereas the smaller specimens display branching but no other diagnostic features. While the smaller population remains unresolved phylogenetically and may represent cyanobacteria, we interpret the larger fossils as multicellular eukaryotic macroalgae with a plausible green algal affinity based on their large size and presence of rib-like wall ornamentation. Considered as such, the latter are among the few green algae and some of the largest macroscopic eukaryotes yet recognized in the early Neoproterozoic. Together with other Tonian fossils, the Dolores Creek fossils indicate that eukaryotic algae, including green algae, colonized marine environments by the early Neoproterozoic Era.more » « less
An official website of the United States government
